Проста лінійна регресія


Розділ 1. Вступ. Короткий опис дослідженння.

Наша мета полягає в дослідженні економічних явищ та закономірностей на мікрорівні. Для цього ми обрали такий об’єкт спостереження: завод оборонного комлексу України. Використовуючи інформацію про ціну ресурсів та оптову ціну на один з товарів, що випускає завод, спробуємо встановити залежність між ціною на ресурс та оптовою ціною на товар.

Оскільки ми повинні використати теорію простої лінійної регресії, очевидно, ми прийдемо до висновку, що оптова ціна товару (НРГС-4) певним чином лінійно залежить від ціни на ресурс. Наша задача – з’ясувати, чи можна взагалі використовувати лінійну залежність в цьому випадку, і отримати лінійну (або зведену до лінійної ) функцію, що адекватно відображає спостережувану залежність.

Пропонуємо проаналізувати модель залежності оптової ціни від ціни вищенаведеного фактору виробництва. Очевидно, така залежність є прямою, тобто знаки параматрів повинні бути додатніми. Приймемо для початку гіпотезу, що як коефіцієнти моделі, так і змінні будуть мати лінійний вигляд. Очікуємо в результаті дослідження виявити таку модель, що буде найбільш адекватною. Проаналізуємо для цього інші функції, що можуть бути зведеними до лінійних і відповідати нашій моделі.

Розділ 1. Теорія побудови регресійної моделі.

Треба зауважити, що теорія виробництва фірми, а також виробничі функції не дають інформації про те, як залежить ціна товару від ціни факторів виробництва. Ми знаємо що виробничі функції, а зокрема і функція Кобба-Дугласа, виводять залежність між кількістю використаних факторів виробництва та кінцевим випуском ( ) . З такої функції ми можемо отримати залежність між кількістю використаних ресурсів та вихідним випуском. Тоді, цілком логічним є те, що ціна на товар обернено залежить від відношення між кількістю випущеного товару та кількістю використаного ресурсу. Це випливає з того, що ціна ресурсу обіймає значну частину оптової ціни, тобто складає найбільшу її частку (підтвердження цьому можна побачити в таблиці з даними). Звичайно, ми не можемо з точністю сказати, що така залежність може бути лінійною, але застосовуючи відповідний економетричний аппарат, ми визначимо придатність моделі, що зображена лінійною функцією або функцією, зведеною до лінійної.

Наведемо використану інформацію. Зазначимо, що дані наведено на 1 день кожного другого місяця року.

Зміна оптової ціни товару НРГС-4 за 1998-1999 роки

Назва показника

1998 рік

Січень

Березень

Травень

Липень

Вересень

Листопад

Ціна на ресурс.

69853

88293

80350

115048

121749

119374

Оптова ціна

147219

175346

169801

173696

193053

179438

Назва показника

1999 рік

Січень

Березень

Травень

Липень

Вересень

Листопад

Ціна на ресурс.

107994

173549

177749

153476

154500

152460

Оптова ціна

207084

282335

312111

248257

25057

247559

Одиниці виміру ціни – гривні.

Джерело інформації - бухгалтерський віддів ВО Радіоприлад, Запоріжжя.

Розділ 2. Оцінка регресійної моделі.

Розглянемо модель залежності оптової ціни від ціни на ресурс:

1 Pопт = B0 + B1 Рресурс, де B0 та B1 – невідомі параметри моделі, Рресурс – ціна ресурсу.

Оскільки ми знаємо, що нашій моделі можуть відповідати не тільки лінійні функції вигляду , а і степеневі чи екпоненційні, оцінимо 4 види моделей:

1 Lin-lin модель.

2 Lin-log модель.

3 Log-lin модель.

4 Log-log модель.

Накращою буде модель з найбільшим коефіцієнтом детермінації . Розрахункові дані наведені в наступних таблицях.

Lin-lin модель.

Variable

Coefficient

Std. Error

T-Statistic

Prob.

PRICE_SOURCE

1420318

0148270

9579258

00000

C

3402095

1940233

1753447

01101

R-squared

0901732

Mean dependent var

2132643

Adjusted R-squared

0891905

S. D. dependent var

5406037

S. E. of regression

1777388

Akaike info criterion

1334952

Sum squared resid

3159107

Schwarz criterion

1343034

Log likelihood

-7809711

F-statistic

9176219

Durbin-Watson stat

2441104

Prob(F-statistic)

0000002

Lin-log модель

Variable

Coefficient

Std. Error

T-Statistic

Prob.

LOG_X

1614849

2251863

7171166

00000

C

-9331918

1600066

-5832208

00002

R-squared

0837201

Mean dependent var

2132643

Adjusted R-squared

0820922

S. D. dependent var

5406037

S. E. of regression

2287708

Akaike info criterion

1385433

Sum squared resid

5233608

Schwarz criterion

1393515

Log likelihood

-8112598

F-statistic

5142562

Durbin-Watson stat

1941843

Prob(F-statistic)

0000030

Log-lin модель

Variable

Coefficient

Std. Error

T-Statistic

Prob.

PRICE_SOURCE

0000666

650E-05

1024050

00000

C

6795716

0085081

7987346

00000

R-squared

0912943

Mean dependent var

7635971

Adjusted R-squared

0904238

S. D. dependent var

0251863

S. E. of regression

0077940

Akaike info criterion

-2114740

Sum squared resid

0060747

Schwarz criterion

-2033923

Log likelihood

1468844

F-statistic

1048678

Durbin-Watson stat

2932728

Prob(F-statistic)

0000001

Log-log модель

Variable

Coefficient

Std. Error

T-Statistic

Prob.

LOG_X

0765822

0094660

8090221

00000

C

2199048

0672610

3269426

00084

R-squared

0867465

Mean dependent var

7635971

Adjusted R-squared

0854211

S. D. dependent var

0251863

S. E. of regression

0096167

Akaike info criterion

-1694450

Sum squared resid

0092481

Schwarz criterion

-1613633

Log likelihood

1216670

F-statistic

6545167

Durbin-Watson stat

2400324

Prob(F-statistic)

0000011

Як ми бачимо, найбільший коефіцієнт детермінації спостерігаємо в Log-lin моделі. Оберемо саме цю модель для подальшого дослідження.

Лінійний вигляд нашої моделі такий: . Як бачимо, тепер коефіцієнти нашої моделі – це та . Тобто, в нашому випадку, . Звичайно, ми очікували отримати інші коефіцієнти для нашої моделі (враховуючи, що вона класично лінійна), оскільки ми використовуємо Log-lin модель, коефіцієнти дорівнюють натуральним логарифмам та . Як ми і очікували, наявний прямий зв’язок між ціною ресурсу та оптовою ціною продукції, тобто знаки коефіцієнтів моделі є додатніми.

Можемо перетворити її в експоненційну форму, отримавши . Тоді рівняння нашої моделі набуде вигляду . Для економітричного аналізу використаємо цю функцію, зведену до лінійної. При цьому для застосування моделі достатньо буде взяти антилогарифм від значення .

Розрахунок показників.

1 Перевірка на значимість коефіцієнтів моделі.

Перевіремо дві нуль-гіпотези .

Порівняємо t-статистику кожного з параметрів, що розраховується за формулою (З n – k ступенями вільності, де n – кількість спостережень, k – кількість оцінених параметрів), з t – критичним значенням (найбільше Отримаємо з таблиці t-розподілу Стьюдента). В нашому випадку k = 2, n = 12. Рзрахункові дані отримаємо з таблиці, що була отримана за допомогою пакету Eviews. Ми отримали tрозр = 10,24 (для коефіцієнта B­1) з ймовірністю, що майже дорівнює нулю. Це означає, що наш коефіцієнт статистично значимий з майже стовідсотковою ймовірністю. До аналогічного висновку приходимо стосовно параметра Bo (tрозр = 79,87). Статистична значимість коефіцієнта B­1 також означає, що Х має значимий вплив на У.

2 Інтерпретація коефіцієнта детермінації.

Ми отримали кофіцієнт детермінації , що означає, що зміна Y, що в нашій моделі є натуральним логарифмом від значення оптової ціни, на 91.2943% пояснюється зміною Х.

3 Побудова інтервалів довіри для оцінених коефіцієнтів.

Як нам відомо, інтервали довіри для оцінених коефіцієнтів мають вигляд:

Оберемо рівень значимості .

Розрахуємо за формулою:

Також розрахуємо :

Критичне значення візьмемо з таблиці t – розподілу Стьюдента.

В результаті отримаємо:

Це означає що коефіцієнти та лежать у відповідних проміжках з ймовірністю 95%.

4 Перевірка моделі на адекватність за F ­– критерієм Фішера.

Для перевірки моделі необхідно:

Сформувати нуль-гіпотезу .

Задати - рівень значущості (у нашому випадку 5%)

Обчислити F-відношення :

За таблицями F ­– розподілу Фішера знайти F ­– критичне значення при 5% рівні помилки та (1, n - 2) ступенями вільності.

Цю гіпотезу відкидаємо з 5% ризиком помилитися, оскільки.

Тобто, наша модель адекватна за F ­– критерієм Фішера.

5 Розробка економічного прогнозу для дослідженої моделі.

Задамо прогнозне значення х = 2000 для 1 січня 2000 року. Отримаємо прогнозне значення для залежної змінної. За допомогою пакету Eviews отримаємо .

Задамо 95% рівень значущості. Інтервал довіри для математичного сподівання залежної змінної розраховується за формулою:

Для певного значення У формула виглядає так:

Отже, в результаті розрахунків отримаємо:

Інтервали довіри для інших значень залежної змінної схематично наведені на графіку

Наше прогнозне значення У та математичне сподівання У будуть лежати у відповідних проміжках з ймовірністю 95%.

Відповідні значення для оптової ціни та її математичного сподівання будуть лежати у таких проміжках

Як бачимо, розраховані інтервали довіри мають дуже відчутні проміжки.

6 Аналіз економічної ситуації на основі розробленої моделі.

Як ми побачили, оптова ціна суттєво залежить від ціни на ресурси. Такого результату і слід було очікувати, оскільки ціна на ресурс складає значну частку від собівартості товару. Тому слід зважати на зміну ціни ресурсів при визначенні оптової ціни товару. Треба зазначити, що розроблена модель досить адекватно відображає дійсність і може дати інформацію керівництву підприємства про те, яку ціну можна призначити на товар при зміні ціни на ресурс.

Розділ 3. Пдсумки та висновки.

В результаті нашого дослідження ми отримали залежність між оптовою ціною на товар і цінами на ресурс виробництва. Хоча вивчена нами економічна теорія витрат фірми не дає такої залежності, ми довели, що такий зв’язок існує, і його можна вважати лінійним. Треба зазначити, що наша модель не відображена лінійною функцією, на що ми сподівалися на початку дослідження. Для більш адекватного відображення наявної економічної ситуації слід використовувати експоненційну функцію, що може буде зведена до лінійної. При застосуванні саме такої моделі, зміна залежної змінної найбільш пояснюється зміною незалежної.

В результаті ми отримали функцію, за допомогою якої можна визначити оптову ціну товару для заданої ціни на ресурс(за інших рівних умов): . Де Х – ціна ресурсу, - оптова ціна продукції.


  • Меню